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Abstract
Consider a particle which is released at some point on a fractal and which
moves about the fractal at random. A long standing goal has been to determine a
differential equation governing the probability density function which describes
this walk. As well as being interesting in its own right, this problem is thought
to provide an insight into the problem of anomalous diffusion. Many attempts
to derive such an equation have been made, all with limited success, perhaps
because of the tension between smoothness required by differential equation
tools and the lack of smoothness inherent in fractals. Here we present, for the
first time, the equation governing the random walk on a simple fractal—the
Koch curve. We show that this equation makes computation of the probability
density function for this problem a simple matter.

PACS numbers: 05.45.Df, 66.10.Cb, 05.40.Fb

1. Introduction

Random walks on fractal structures are frequently used to model anomalous diffusive behaviour
in disordered media [1], e.g., to model the diffusion of hydrogen in amorphous metals [2] or
of water in biological tissues [3], to mention only a few occurrences. All these processes are
characterized microscopically by a time-dependent distribution of particles P(r, t), where the
mean square distance, 〈r2(t)〉, a particle has moved in time t from its starting point is

〈r2(t)〉 ∝ t2/dw (1)

where dw is the random walk dimension of the underlying fractal structure.
In the literature, many suggestions [4–9] have been given to generalize the well known

Euclidean diffusion equation

∂

∂t
P (r, t) = ∂2

∂r2 P(r, t) (2)
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Figure 1. Difference of our approach to previous discussions of diffusion on fractals in
the literature. Instead of averaging the data after the simulation, we impose the similarity
transformation (3) and get a muscle-shaped cloud, such as the one depicted in figure 2. The
fibres of this cloud are continuous functions of the similarity variable η and therefore predestinated
for a description by an ordinary differential equation.

to anomalous diffusion. All these approaches, some including nonlinear equations [9] or
even fractional derivatives [6–8], were at best partially successful [10] because a detailed and
comprehensive physical theory for generalized diffusion equations, in terms of the underlying
fractal dynamics, is still missing. Such a theory has proven to be much more difficult to
construct than that for the Euclidean case since there is no simple Gauss law for a fractal. This
law is needed to convert a simple balance equation into a differential equation.

The main reason for these complications is that fractals are, by definition, ‘spiky’ or
‘rough’. As a result, walks on them are not naturally described by differential or integral
equations, which require a certain degree of smoothness.

The common way to this obvious difficulty is to look at some type of averaged quantity
(see figure 1, upper branch). But the type of angle averaging implied by P(r, t) does not
impart enough smoothness [4, 5, 10], so as a consequence, the probability density P(r, t) is
a fractal itself. We do not know the dynamics of the random walk on the fractal well enough
to do the kind of physically meaningful averaging needed for smoothness. So far, averaging
must still be considered as a hypothetical solution to this problem. However, the attempt to
find a partial differential equation for diffusion on fractals using any kind of average has not
succeeded.

A more promising starting point for describing random walks on fractals is the use of the
natural similarity group of such a walk (see figure 1, lower branch). We use the observation
that the probability density P(r, t)—and also all the cited generalized diffusion equations
[10]—is invariant under a one-parameter group [11] and can be written in the form

P(r, t) = t−(df/dw)G(η) (3)

where df is the fractal dimension and η = rt−1/dw is the similarity variable.
In an earlier paper [12] we applied this approach to the Sierpinski gasket and plotted

G(η) rather than P(r, t), reducing a 3D plot to a 2D plot. This was done by determining
the probability density P(r, t) for several distinct times t. These distributions turn out to be
multivalued and even self-similar. They all can be plotted against the similarity variable η

in one graph by applying equation (3). In figure 2, taken from [12], the resulting G(η) is
still multivalued and appears like a muscle-shaped cloud with intrinsic fibres, revealing an
interesting structure of the random walk behaviour. All the information about the random
walk is given by these fibres. Therefore it is possible to reconstruct the original density P(r, t)

using just the information from these fibres.
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Figure 2. The muscle-shaped cloud G(η) for the diffusion on a Sierpinski gasket. It is generated
by taking the data P (r, t) for many different times t and transforming them using equation (3).
Note the fibres within the cloud, which can be shown to be continuous functions of η. This figure
is taken from [12].

Finding an ordinary differential equation for these fibres, which turn out to be continuous
functions of η, would completely describe the diffusion process on the considered fractal. This
approach is much more promising than trying to construct a PDE for a somehow-averaged or
even fractal probability density P(r, t).

In this paper we apply the similarity solution method to the much easier case of the Koch
curve taking the step from observation to understanding. For this prototype case we reproduce
the fibres of the cloud by considering the well known diffusion on a line. The idea of echo point
classes, proposed in [12], is also revisited and we present an ordinary differential equation for
the smooth fibres allowing us to reproduce the fractal-like P(r, t) gathered from simulations.

2. Random walk on the Koch curve

The Koch curve is constructed by dividing a line of length 2 units into three equal segments
and replacing the middle part with two sides of an equilateral triangle of the same length as
the removed segment. In the second iteration stage this procedure is repeated with each of the
four segments of length 2/3 units. The limiting case, after iterating this process an infinite
number of times, is known as the Koch curve [13].

We consider a finitely generated Koch curve, such as the one depicted in figure 3, and set
the coordinate origin at the apex of the centre triangle. Topologically, the M-times-iterated
Koch curve is just a one-dimensional lattice. The chemical distance l of an arbitrary point x
from the origin of the Koch curve is defined as the number of sites this point is away from the
origin times �x, where �x is the Euclidean distance between two neighbouring points with
�x = 2/3M [14].

If we consider random walks on the Koch curve, starting at the origin, in terms of the
chemical distance l, we can apply the well known results for diffusion on the line. For small
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Figure 3. The six-time-generated Koch curve.

�x and long times the resulting binomial distribution converges to a normal distribution, and
thus the probability density function for the walk is

P(l, t) = 1

2
√

Dπt
exp

(
− l2

4Dt

)
(4)

where D is the diffusion constant. This smooth distribution tells us the probability of finding
a particle at a point on the Koch curve which is at a certain chemical distance from the origin.
Instead, we want to know the probability in terms of the Euclidean distance r at which this
point is from the origin. Therefore we need the relation l(r) for all points of the Koch curve.

To achieve this we recall some scaling exponents that characterize fractals. In the easy
case of the Koch curve, the number of segments of the fractal, which is often referred to as
the mass m of the fractal [14], scales in the same way as the chemical distance. Thus the
chemical dimension dl , defined as m ∼ ldl [14], equals 1. On the other hand, we immediately
get the fractal dimension df from the construction process. This dimension is defined as the
scaling exponent of m ∼ rdf . As the mass increases by a factor of 4, if we triple r we find
df = ln 4/ ln 3 for the Koch curve.

The relation between the chemical distance l,which is the minimal length of a path between
two points, and the Euclidean distance r is given by l ∼ rdmin with the scaling exponent dmin
[14]. A comparison with the other mentioned scaling properties yields dmin = df/dl = df and
therefore:

l = α rdf (5)

with the constant α.
Figure 4 shows a plot of the chemical distance versus the radial distance for each point of

the Koch curve depicted in figure 3. Obviously the data show the predicted behaviour (5) on
the average, but it also reveals the fractal nature of the Koch curve in the deviation from this
power law.

Let us examine this in more detail by plotting the value of α versus r, where α is obtained
as α = l/rdf from the points of an M-generation Koch curve. To compare the values of α for
different iteration stages M, the chemical distance must be rescaled. We rescale l such that in
each iteration depth, the chemical distance from the origin to one of the two endpoints of the
Koch curve in figure 3 has the value l = 1. Due to this rescaling, each point of the Koch curve
keeps its chemical distance in higher iteration depths, i.e., when new intermediate points are
introduced. Figure 5 shows this data for M = 5 (circles) and M = 6 (dots). As expected
α for corresponding points in the different iteration depths are equal, a consequence of the
self-similarity of the fractal. Another result is that the values for α are bounded and we find
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Figure 4. The relation between the chemical and Euclidean distances calculated for the Koch curve
in figure 3. Note that the datapoints reflect the fractal essence of the Koch curve. The continuous
curve represents equation (5), which yields the average behaviour.

αmin = 0.823 and αmax = 1.07. Because of the described scaling property, the extreme values
of α converge for increasing iteration depths.

3. Echo point classes

The self-similarity of the Koch curve implies that the points that correspond to one another
in different iteration stages have the same value of α. Let us examine the right neighbour of
the starting point in a fixed iteration stage of the Koch curve, i.e., the solid circle denoted by
x1 in figure 6. As we do not compare the different iteration stages here, we do not have to
rescale the chemical distance. Therefore this point has the Euclidean distance and also the
chemical distance r1 = l1 = �x from the starting point with �x = 2/3M . Thus we get
α1 = l1/r

df
1 = (�x)1−df . This point also defines a ray starting at the origin. For the next

filled circle, x2, on this ray one obtains r2 = 3�x and l2 = 4�x and thus α2 = 4/3dfα1 = α1,
recalling that df = ln 4/ ln 3. For all successive filled circles, x3, x4, . . . , on this ray the
Euclidean and chemical distances are multiplied each time by the factors 3 and 4, respectively.
All these points have the same value α = α1 and are therefore denoted as belonging to the
same class of echo points.

Due to the symmetry of the rays, the points y1, y2, . . . also belong to the same echo point
class. In figure 6 the line of symmetry is denoted by a dashed line. Note that the point y1 has
twice the chemical distance of x1 and x2 twice that of y1 and so on. Summarizing this fact we
can say that for every odd n, all points with chemical distance l = 2in�x, i = 0, 1, 2, . . . ,

belong to the same echo point class and have the same value of α (see figure 6).
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Figure 5. The deviation of the computed data for l(r) to the predicted behaviour (5) by plotting
α = l/rdf versus r. Note that the values for M = 5 (circles) fall exactly on the corresponding
values from M = 6 (dots). Note also that the values of α are bounded.

Figure 6. Echo point classes of the Koch curve. All points denoted by the same symbol have the
same value for α. Note that the rays are symmetric with respect to the dashed line.
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Figure 7. The fibres Gα(η) for all the echo point classes in figure 6 form a muscle-shaped cloud
G(η). Introducing more and more fibres will make the cloud denser. For this figure we used D = 1
in equation (7).

4. G-density on the Koch curve

Since we know the relation between l and r, we can now express the probability density
P(r, t) in terms of its scaling properties (3). As P(r, t) is a fractal curve so is G(η). We start
by considering the point x1 in figure 6. This point has a certain chemical distance l1 and an
Euclidean distance r1 from the origin, and belongs to the echo point class with α1 = (�x)1−df .

As r and l are fixed for each point of the fractal, the time development of the probability
of finding a walker at this point is given by equation (4) in terms of the chemical distance.
The variable substitution η = rt−1/dw changes the running variable from t to the similarity
variable η and we find

P(l, t) = t−1/2Gα(η) (6)

with

Gα(η) = 1

2
√

Dπ
exp

(
− 1

4D

l2

rdw
ηdw

)
= 1

2
√

Dπ
exp

(
− α2

4D
ηdw

)
(7)

where we applied relation (5) and dw = 2df, which is a special property of the Koch curve. As
equation (7) just depends on α, and no longer on the distinct values of r or l, each member of
an echo point class produces the same fibre Gα(η). These functions are stretched exponentials
with the parameter α. As α has an upper and a lower boundary, a plot of Gα(η) for different
echo point classes α looks like a muscle, where the top and bottom fibres are given by αmin
and αmax, respectively.

In figure 7 the values for the chemical distance and therefore also for α have been rescaled
corresponding to the procedure described in section 2. The fibres for the first eight echo point
classes (denoted by the symbols in figure 6) are plotted. Introducing more values of α makes
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the cloud denser and the extremal values are represented more exactly. Nevertheless figure 7
gives a reasonable impression of the thickness of the cloud.

This muscle-shaped cloud G(η) is very similar to the one found on the Sierpinski gasket
[12] (compare figure 2), with two major differences: first, we do not encounter any wiggles
here. We conjecture that these wiggles are a consequence of the lacunarity of the gasket. For
a nonlacunar fractal, such as the Koch curve, the topological equivalence to a straight line
implies the use of (4) which has no wiggles. Second, in the easy case of the Koch curve we
are able to write down a closed form for Gα(η), which is an open question for random walks
on other fractals.

5. ODE for diffusion on the Koch curve

Since we have a closed form for the smooth fibres (7) of the cloud, it is straightforward to find
a differential equation for them. This describes the diffusive behaviour on the Koch curve.

An obvious choice is to seek a first-order differential equation as its solutions have one
arbitrary integration constant, which in our case can be identified with the parameter α. From
this viewpoint G(η) represents a one-parameter family of functions, one for each α. To find
the equation that yields this family of functions we calculate the logarithmic derivative of
G(η),

G′(η)

G(η)
= d

dη
ln(G(η)) = −dw

α2

4D
ηdw−1 = dw

η
ln

(
2
√

Dπ G(η)
)

(8)

in order to eliminate the free parameter α. It follows that the ordinary differential equation

η G′(η) − dw G(η) ln
(

2
√

Dπ G(η)
)

= 0 (9)

has the desired family of solutions (7). It is clear from (8) that no other first-order ordinary
differential equation will have this particular family of solutions.

6. Comparison with random walk data

To demonstrate the applicability of our results, we use equation (9) to find the probability
density P(r, t0) of walkers on the Koch curve after a certain time t = t0 with a start distribution
P(r, 0) = δ(0) of the walkers.

The solution of the ordinary differential equation (9) is given by Gα(η) (see equation (7)),
where α denotes the arbitrary constant, which can be chosen as α = l/rdf .

In this example we consider the first eight echo point classes (compare figure 6) and
get the chemical and Euclidean distances for the first point of each of these classes directly
by constructing a Koch curve of small iteration depth (M = 3 in the current case). The
successive echo points in each class are then easily calculated by multiplying l and r by 2 and√

3, respectively. In this manner all the echo points of all the considered classes for a given,
but arbitrary, iteration depth are obtained.

Now we apply equations (6) and (7) to find the values of the probability density at all
the considered points. Connecting the resulting points in an r–P plot should give a good
approximation of the (multivalued) probability distribution P(r, t) of random walkers on a
Koch curve.

To check the quality of our approximation we simulate such a random walk by iterating
the master equation in the chemical space,

P(l, t + �t) = P(l, t) + w(P(l − �l, t) + P(l + �l, t)) − 2wP(l, t) (10)
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Figure 8. The probability density P (r, t0 = 10 000). The data points (dots) are determined
by applying the master equation (10) on a six-time-generated Koch curve with the transition
probability w = 0.4. The solid curve is produced by using the information given by the fibres (7)
for the first eight echo point classes described in figure 6.

where w is the transition probability from one site to another. If we choose P(l = 0, t = 0) = 1
and P(l, 0) = 0 for all other l, equation (10) becomes the discrete version of equation (4) with
the diffusion constant D = w(�l)2/�t and a δ-function as start distribution.

Therefore we can compare the distribution that we get from the master equation at
time t = t0 with the approximation using the fibres, where we set the diffusion constant
D = w(�l)2/�t in equation (7). Figure 8 shows such a comparison for �t = �l = 1 and
t0 = 10 000 on a six-time-generated Koch curve. We have chosen w = 0.4 and thus we
used D = 0.4 in equation (7). The approximation shows the basic features of the simulated
distribution very well especially for small r. But even for larger r our approximation describes
the basic behaviour of the probability distribution. To get a better result, we simply have to
consider more echo point classes.

To stress the success of our approximation, we summarize this example. We calculate the
chemical and Euclidean distances for just eight points using an iteration depth M = 3 of the
Koch curve. Evaluating the fibres at these points and using the similarity approach (6), we
get a very good approximation for the probability distribution on a six-time-generated Koch
curve. The validity of this approach is not limited to this low iteration depth. It also works
for very high iteration depths, where a numerical comparison with the master equation is not
feasible anymore.

7. Conclusion

In this paper we address the problem of a random walker moving on a Koch curve. Instead of
averaging the simulated data to obtain a somehow-smoothed probability density, we apply a
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similarity group approach and deal with the multivalued G-density. The occurring fibres are
calculated explicitly using the topological equivalence to a straight line.

For the first time an ordinary differential equation is given describing all the details of the
diffusion process on a Koch curve. As a first application the probability density, commonly
used for the discussion of the diffusion process, is arbitrarily well approximated. Thus the
long standing goal to determine an equation governing the probability density function on a
fractal is reached for the simple case of the Koch curve.

The described results can be easily generalized to any fractal that is topologically
equivalent to a straight line. The generalization to more complicated, especially lacunar,
fractals is also possible, at least in principle. The concept of fibres, clouds and echo points has
already been described in [12] for the Sierpinski gasket. But an analytical function describing
the fibres in this case has not been found yet and therefore no ordinary differential equation
for them has been established. This is the topic of future work.
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